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Genome sequencing and annotation has enabled the
reconstruction of genome-scale metabolic networks.
The phenotypic functions that these networks allow for
can be defined and studied using constraints-based
models and in silico simulation. Several useful predic-
tions have been obtained from such in silico models,
including substrate preference, consequences of gene
deletions, optimal growth patterns, outcomes of adap-
tive evolution and shifts in expression profiles. The suc-
cess rate of these predictions is typically in the order of
70-90% depending on the organism studied and the
type of prediction being made. These results are useful
as a basis for iterative model building and for several
practical applications.

The value of building mathematical models of cells and
simulating their integrated behavior has long been
recognized, and computer simulations of complex biologi-
cal functions began essentially as soon as the compu-
tational capability became available [1-3]. Lack of
appropriate experimental data and the complexity of
living cells have historically hampered these efforts. The
first whole-cell metabolic model was developed for the
human red blood cell (RBC) [4] as the culmination of two
decades of work. Continual model building of the RBC has
since taken place [5—7] and versions can now be down-
loaded [8]. These RBC models are based on kinetic theory
and are comprised of ordinary differential and associated
algebraic equations. Interestingly, the RBC has emerged
as a model system to examine various in silico analysis
procedures [9,10]. To date, the success with the con-
struction of a whole-cell RBC model has not been
reproduced for other cell types although several efforts
are emerging [11,12].

The sequencing of the first bacterial genome [13]
signified a transition of biology from a data-poor to a
data-rich environment. Since then, various ‘omics’ data-
sets are becoming available in ever increasing sizes
[14-16]. This flood of biological data has underscored
the need for systems analysis in biology and necessitated a
change in mathematical modeling philosophy [17-19].
Modern biological model building thus needs to meet new
sets of criteria: models need to be organism-specific, data-
driven, easily.scalable, capableof integrating various
‘omics’ data types and able to account for the inherent
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uncertainty in biological functions. In silico models will,
therefore, be informatics intensive calling for the appro-
priate development of databases and algorithms, as well as
the construction of robust quality controlled software
processes for their implementation. Many modeling
approaches are currently being used to model cellular
processes, including kinetic [11,12], stochastic [20,21] and
cybernetic approaches [22,23]. Although these methods
provide useful results, it is currently difficult to use them
to model genome-scale networks because of the large
number of parameters needed and the computational
complexity. To date, genome-scale models of metabolism
have only been analyzed with the constraints-based
modeling philosophy, and therefore we focus on this
approach. The purpose of this review is to describe
genome-scale microbial models that have been built,
their uses, and to describe some of the current challenges
in this field.

The constraints-based modeling approach

The challenges of genome-scale model building are being
met, in part, by constraints-based models [19,24]. This
modeling process involves a multi-step procedure (Fig. 1).
The first step is to reconstruct the underlying network
[25—29]. For metabolism, this is a well-established
procedure [25], whereas methods for the reconstruction
of the associated regulatory networks are being developed
[30,31]. The second step involves the statement of the
constraints under which the reconstructed network
operates. Such constraints are based on enzyme capacity,
reaction stoichiometry and thermodynamics associated
with reaction directionality and biochemical loops [32,33].
The statement of constraints leads to the definition of a
solution space in which the solution to the network
equations must lie. This solution space contains all the
possible functions of the reconstructed network or all the
allowable phenotypes. For example, all possible steady
state flux distributions through a metabolic network are
bounded in a solution space formed by a set of unique basis
pathways, called the ‘extreme pathways [34].” All steady
state flux distributions are similarly characterized by the
elementary modes [35]. The third step is to determine
which of the possible solutions in this space correspond to
physiologically meaningful states. Traditionally, linear
optimization has been used to predict optimal states such
as growth and ATP production [36—38] and newer
methods and approaches are being developed to study
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Fig. 1. Process of constraints-based model building and analysis. (a) The process of constraints-based modeling begins with the reconstruction of a metabolic network
from known biochemistry, genomics and physiology. (b) Then, governing physico-chemical constraints are used to define a solution space from which are excluded flux
distributions that are not allowed to the cell’s metabolic network. (c) Within this defined solution space, optimal solution sets can be determined, given a known cellular
objective such as the maximization of growth rate. (d) Predictions of flux distributions following a gene deletion can be made based on the assumption that the new strain
will maintain a flux distribution as similar as possible to that of the wildtype. Thus, these predictions are not based on optimal growth. (e) Potential cellular objectives that
would lead to the observed phenotype can also be evaluated. (f) Phenotypic phase planes show several solution types, including the line of optimal growth (shown in red).
(g) Over time, strains can evolve from suboptimal states to predicted optimal growth rates.

come. Results from a constraints-based analysis have
recently been compared with results from a kinetic model
of human red blood cell metabolism [10]. Some of the
current capabilities and potential applications are sum-
marized in Table 2 and we will discuss them in detail.

the solution space [39-41]. For example, in metabolic
networks the region of the space that corresponds to
optimal growth has been correlated to experimental data
[42]. Methods to study large number of solution types, such
as the phenotypic phase plane [43], have been developed
and used to drive optimal growth [42] and adaptive

evolution experiments [44].

The constraints-based modeling philosophy has been
established as an alternative to kinetic theory based
models but it is in the early stages of development and we

Current genome-scale metabolic models

Genome-scale constraints-based models of metabolism
have been built for several organisms, and some have
appeared in the literature, including for Escherichia coli

can expect much more progress in this field in the years to ~ [45,46], Haemophilus influenzae [47], Helicobacter pylori

Table 1. Current dimensions of in silico networks

Organism E. coli H. influenzae H. pylori S. cerevisiae
Genome characteristics

Genome size (Mb) 4.6 1.83 1.66 12.16

Total ORFs 4401 1743 1590 6335
Completion date 1997 1995 1997 1997

Size of current genome-scale networks

Total metabolic genes 660 412 291 708
Metabolic reactions 720 461 390 1175
Metabolites 436 367 340 723

Three in silico networks have been reconstructed and published: Escherichia coli, Haemophilus influenzae, and Helicobacter pylori and Saccharomyces cerevisiae. The
number of metabolites in S. cerevisiae includes metabolites in both the cytosol and the mitochondria. Summary information is provided about each of these organisms and

each corresponding model.
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Table 2. Genome-scale microbial in silico models: methods and applications

In silico methods

Potential applications

Simulated genetic modifications
Gene deletions or additions
Gradual inhibition or enhancement of gene function

Objective and adaptability studies
Predictions of optimal growth rate

Prediction of flux redistribution following gene deletion
A priori prediction of the outcome of adaptive evolution

Redundancy calculations

Minimal reaction sets

Metabolic pathway redundancy

Most/Least Redundant Subsystems

Accounting for regulation

Predictions of co-regulated reaction sets

Increased predictive power through incorporation of
information about transcriptional regulation

Identification and prioritization of candidate drug targets
Production of low molecular weight products from cellular
metabolism

Direction of adaptive evolution strategies to engineer strains
with desired properties

Evaluation of current state of knowledge about metabolic (and
regulatory) networks

Designing and implementing of experimental programs
Analysis of enzyme deficiencies

Evaluation of genome annotations

[48], and Saccharomyces cerevisiae [49]. Others, including
Bacillus subtilis, Pseudomonas aeruginosa, and Pseudo-
monas putida have been fully built but not yet published
(Sung Park and Jeremy Edwards, unpublished results).

‘Genome-scale’ is used to describe these models because
all of the metabolic reactions that could be determined to
take place in an organism based on genome annotation and
biochemical literature are included in the model. The
number of genes accounted for and the number of reactions
included in each of these models is summarized in Table 1.
The current models are developed based on 60-70%
complete genome annotation. Several lessons have been
learned about these organisms as a result of the genome-
scale models and many potential biotechnology appli-
cations have been identified.

Simulating the results of manipulating gene content and
function

There are many experimental methods for changing the
gene content of an organism. Genes can be added or
deleted, or their functions impaired or enhanced. Reliable
computational models that link genotype to phenotype
would thus allow for directed manipulation of the gene
content of an organism to obtain a desired phenotype.
Genome-scale constraints-based models can provide such
a link. The ability to predict phenotypic outcomes from
genetic inputs would provide a basis for the rational
selection of drug targets and the generation of hypotheses
about how to metabolically engineer a strain with desired
properties.

Gene deletion studies

Individual genes have been deleted from in silico models,
the consequences of the deletion assessed and the results
compared with experimental data. Such in silico predic-
tions were found to be ~60% correct for an initial model of
H. pylori [48] and 86% in E. coli [30,45] Interestingly, the
failure modes are of great value to the investigator using
genome-scale models. Prediction failure means that the in
stlico model is incomplete and is lacking in some way or
that the data are potentially incorrect. Thus detailed
analysis of thefailure modesiis important because it will
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lead to updated and improved in silico models for the
particular organism and to increased understanding of the
organisms’ physiology.

Some of the commonly occurring failure modes have
been identified. For instance, if a gene deletion is lethal in
silico and has been experimentally identified as non-
lethal, it suggests that there are either unknown isozymes
or alternative routes have not been fully characterized.
Conversely, if a gene deletion is predicted to be non-
essential and is experimentally found to be lethal, it
suggests that another factor besides the inability to
synthesize biomass is causing the gene deletion to be
lethal. Other potential reasons for a gene deletion to be
lethal are unmodeled regulatory effects or toxicity of
metabolic intermediates.

Making all possible double knockouts is easy in silico,
but difficult in vivo. Thus, if an in silico model has been
validated for a series of single gene knockouts, it can be
used in a prospective fashion to pick what are likely to be
informative double knockouts. This approach might prove
to be useful by complementing and directing experimental
efforts to assess the epistatic consequences of synthetic
lethal mutants. There is limited computational experience
with double-knockouts [47,50].

Gene additions

The potential of gene additions to the E. coli metabolic
network [46] to improve the theoretical yield of amino acid
production has been evaluated [39]. The optimal pro-
duction rates of amino acids from a wild-type in silico
strain were compared with an in silico strain that was
allowed access to as many as 3400 additional biochemical
reactions known to be catalyzed in other species. It was
determined that gene additions were able to increase the
theoretical maximum yield of seven amino acids in E. coli
with the addition of known reactions. Interestingly, these
increases were generally the result of the addition of only a
few genes, often only one or two.

Network robustness

The gradual retardation of enzyme activity can readily be
simulated in silico by simply constraining the maximum
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flux through the reaction. In general, the results show that
as the activity level of an enzyme is increased or decreased,
overall network function, such as meeting growth require-
ments, does not change significantly [51]. In other words,
the reconstructed network tends to be robust with respect
to changes in the activity of individual components. For
instance, the flux levels through the enzymes associated
with the seven essential in silico genes from the central
metabolism of E. coli were incrementally decreased from
their maximum level to zero and the resulting effect on the
growth flux was evaluated [51]. Surprisingly, some of these
enzymes could be restricted to significantly low levels with
essentially zero change in the growth flux.

Studying the objectives and adaptability of
microorganisms

Predictions of optimal growth rates

Experimental validation of in silico predictions has
provided increasing evidence that a primary function of
the E. coli metabolic network is to maximize growth
[42,44]. E. coli was grown on several substrates, including
acetate, succinate, malate or glucose minimal media, and
the corresponding uptake rates, secretion rates and
growth rates were experimentally measured. Good corre-
lation was obtained between the growth rates, uptake
rates and secretion rates that were experimentally
observed and the in silico predictions.

Further computational evidence has been obtained
supporting the appropriateness of the optimal growth
objective for E. coli [52]. Objectives for E. coli were
calculated to best match experimental flux distributions
for both aerobic and anaerobic growth. Results showed
that the calculated objectives for growth under both
aerobic and anaerobic conditions were very similar and
corresponded well to biomass production. Flux distri-
bution predictions based on these calculated objective
functions were compared with experimental data and it
was determined that the internal flux distributions
associated with optimal biomass formation matched
experimental predictions better than any of the other
tested objectives. Analysis using additional constraints on
the rate of change of fluxes, called dynamic flux balance
analysis, showed that predictions based on the instan-
taneous optimization of growth match experimental data
better than predictions based on overall or end-point
optimization of growth [53]. Thus, the instantaneous
optimization of growth seems to be the primary objective
of E. coli’s metabolic network.

Flux distribution following gene deletion

Predictions of growth fluxes and other properties using
constrained optimization are based on the hypothesis that
cells have evolved to maximize growth rate. However, this
expectation might not hold for gene knockout strains.
Recently, an analysis method called ‘minimal perturbation
analysis’ has been developed that does not assume that the
knockout is initially optimized for growth [41]. Rather, it is
assumed that the behavior of knockout strains can be more
accurately predicted by assuming that the mutant strain
would have an initial flux distribution that is as similar as
possible to thatiof the wildtype strain (subject to additional
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constraints imposed on the network by the loss of a certain
gene) (Fig. 1). Experimental data (both measured internal
flux distributions and predicted growth rate) provided evi-
dence for the hypothesis that knockout strains of micro-
organisms do use their metabolic networks, at least initially,
similarly to how they were used in the wildtype strains and
thus are not necessarily optimized for growth [41].

A priort predictions of endpoints of adaptive evolution
Evolution can be used to design and improve strain
performance [54]. The adaptive evolutionary process
presumably leads to optimal strain performance in a
defined environment under the applied selection pressure.
The prediction of the outcome of adaptive evolution would
clearly improve the effectiveness of strain development. A
suboptimal growth of E. coli on glycerol reproducibly
underwent adaptive evolution to achieve its maximal
growth rate predicted a priori with the constraints-based
model. [44]. Thus, in silico models show promise in guiding
strain engineering and the use of evolutionary pressure.
One interesting aspect of adaptive evolution is the
question about the uniqueness of the evolved strain. The
evolution of a phosphotransferase system E. coli knockout
shows that strains with equivalent growth performance
can be obtained that utilize their metabolic networks
differently [55]. One of the key features of constraints-
based models is that the complexity of genome-scale
metabolic networks is such that there are multiple
equivalent ways in which a particular phenotype can be
obtained. Such characteristics of redundancy might
become the chief concerns in producing biological designs.

Studying redundancy in metabolic networks
Computing minimal reaction sets

A recent study used the E. coli metabolic model to
enumerate the number of reactions necessary to maintain
the capacity of the metabolic network to produce all of the
biomass components necessary for growth [40]. It was
discovered that the E. coli metabolic network was able to
support growth using only 31% of its known metabolic
reactions for growth on glucose and only 17% of its
metabolic reactions on a rich medium. Thus, E. coli’s
metabolic network contains many redundant reactions,
making E. coli robust to changing environmental con-
ditions and failures in many gene products.

Pathway redundancy

Network-based pathways such as extreme pathways and
elementary modes circumscribe all optimal and subopti-
mal steady state flux distributions through a metabolic
network, meaning that all possible steady state flux
distributions are non-negative linear combinations of
either the extreme pathways or the elementary modes
[34,35]. Pathway redundancy is a measure of the number
distinct routes a metabolic network needs to have to
produce a given set of outputs from a given set of inputs, as
measured by either the number of elementary modes or
extreme pathways. H. influenzae amino acid synthesis
with minimal medium was calculated to have an average
pathway redundancy of 50, whereas amino acid synthesis
in H. pylori had a pathway redundancy of only two,
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indicating a much reduced degree of network robustness
[56,57]. The pathway redundancy associated with various
growth yields of E. coli has been assessed with a model of
core metabolism and was shown to correlate the robust-
ness of the organism to gene deletions [58]. Thus, this
quantitative measure of redundancy is important for the
comparison of robustness in different organisms and in
different subsystems, identifying less redundant systems
that might be more favorable to drug targeting. Addition-
ally, pathway analysis can more readily identify portions of
the network in which the intended effects of genetic
manipulations might be negated by the existence of
redundant pathways.

Accounting for regulation

The genome-scale models discussed above are based on
network topology and the analysis assumes their unfet-
tered use to achieve assumed optimal performance. Cells
use complex regulatory networks to achieve their goals
that might or might not be consistent with assumptions of
optimal performance. Thus, significant need exists to
account for regulation in genome-scale models and initial
progress in this regard is being made [59].

TRENDS in Biotechnology Vol.21 No.4 April 2003

Systemically correlated reactions

Systemically correlated reactions are reactions that must
be used simultaneously under all steady state conditions.
The definition and computational identification of corre-
lated reactions in metabolic networks might give insight
into regulatory strategies. Metabolic reactions that are
always used together in the same ratios have been
identified in subsystems and genome-scale models of
H. influenzae and H. pylori [48,60]. Because these
correlated reactions must occur simultaneously to main-
tain homeostasis, the genes that encode the corresponding
enzymes are likely candidates for co-regulation.

Transcriptional regulation

A Boolean formalism can be used to describe metabolic
events in which transcriptional regulation is a dominant
factor [59]. This Boolean formalism is not used to
model the regulatory network per se but rather is used
to set time-dependent constraints on the metabolic
network stemming from transcriptional regulation. The
inclusion of such regulation can improve mutant
phenotype predictions and enable better simulation of
the time course of growth and metabolic uptake and
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Fig. 2. Integration of ‘omics’ data into constraints-based models. Constraints-based models are being expanded to form an integrated model of metabolism, transcriptional
regulation and protein synthesis. This integrated model provides a framework in which to house various ‘omics’ datasets. The regulatory state of a cell is set by its nutri-
tional environment. This regulatory state then sets the transcription state of the genome, which controls protein synthesis in the cell. The protein produced then establishes
the enzymes present to catalyze metabolic reactions. The costs of synthesizing the RNA transcripts and the proteins will place sequence-based, calculable demands on the
metabolic model. The metabolic model can then be used to generate testable hypotheses and interpret experimental results.
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secretion rates. Analysis of E. coli, without accounting
for transcriptional regulation, made correct predictions
of experimental data in 97 out of 116 cases considered
(83.6%) [30]. However, accounting for transcriptional
regulation using the Boolean formalism, 106 out of the
116 cases (91.4%) were correctly predicted and included
cases that could not be predicted without the regulat-
ory effects [30,59]. Thus, the incorporation of regu-
lation represents an improvement in the predictive
capability of genome-scale in silico models. The
remaining false predictions are usually attributed to
the buildup of toxic substances.

Some future directions and needs

Beyond metabolism: constraints-based modeling as
means to integrate ‘omics’ data

Genome-scale models provide a framework in which high-
throughput biological data can be integrated and thus
broadens our capacity to predict phenotypes. In silico
methods are being developed that allow for the integration
of heterogeneous data sets, including genomics, proteo-
mics, transcriptomics and metabolomics [17,61] (Fig. 2). In
the case of E. coli, the inclusion of metabolism, transcrip-
tion, translation and regulation will lead to models that
account for ~2000 open reading frames. Such a model will
be achievable shortly using the constraints-based methods
described here and if cell replication is included will lead to
comprehensive genome-scale models that include all major
cellular functions.

From concepts to industrial strength models and
simulators

Delivering enhanced efficiency and productivity is the goal
of in silico modeling technologies in any industry. One of
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the main challenges confronting the biotechnology com-
munity is to couple in silico modeling with high-through-
put experimental research and development programs
leading to efficient biological discovery. As new discoveries
are made in the laboratory, the content of organism-
specific models needs to be continuously updated to reflect
this new knowledge. In this way, a model should serve as
the most concise representation of our biological under-
standing of the organism (Fig. 2). An accurate model can
then serve as the basis for prospective research and
experiments can be designed around in silico-derived
hypotheses of the type reviewed herein.

The introduction and scale-up of such an iterative
model development and implementation paradigm
requires the development of robust computational plat-
forms. These platforms must also allow for the integration
of massive amounts of biological data with a comprehen-
sive model to enable integrative analysis, simulation and
visualization of the underlying data and modeling predic-
tions. Furthermore, they must be user-friendly so as to
broaden the user base and acceptance of in silico predictive
technologies beyond the advanced modeling community.

To meet this challenge the SimPheny™ modeling
platform has been recently developed (Fig. 3). This system
supports the efficient implementation of constraints-based
modeling technologies to support model-driven systems
biology research. In the course of developing such an
application to transfer technology from concept to product
several issues were addressed. Technical issues include
the use of complete elementally and charge balanced
reactions (a concept often simplified in the literature), the
explicit association logic between genes, proteins and
reactions, and the annotation of model content with
confidence ratings and complete reference linking to
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Fig. 3. SimPheny™: software suite for building genome-scale constraints-based models and their use for simulation and visualization. Top left: loading the annotated gen-
ome and forming gene—protein-reaction associations. Top-right: the Atlas manger for building maps enabling the visualization of all links and connections in a network
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experimental results and the literature. Implementation
issues include methods to version validated models as they
are iteratively developed, to support multi-user simulation
studies and comparative modeling and also to provide
animated visualization of pathway flux distributions. The
continued development of supporting modeling platforms
will be crucial to delivering on the promise and potential of
modeling technologies to improve biotechnology research.

In closing

Genome-scale models of metabolism have been developed
for several microbial cells. Many useful results have
already been derived from these models and as they
grow in scope and validation, an even broader set of uses
can be anticipated. Perhaps most important is the
integration of diverse omics data and the ability to account
for the management of the genome and associated
regulatory processes. Eventually, such models are
expected to become routinely used for a variety of
biotechnological applications and the generation of novel
biological designs.
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